
 
by Jack Boyce 

with many thanks to Johannes Waldmann 

 
This document assumes a familiarity with basic siteswap notation, and is a 
discussion of some of the more mathematical aspects of these patterns. A good 
introduction to siteswap notation is the JIS siteswap page.  
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Prime Patterns 
A prime siteswap is one which contains no repeatable subsequences. For example, the 
pattern 423 isn't prime since the subsequence '3' can be repeated indefinitely within the 
pattern: 

... 4234234233333333423423 ...

An important fact is that if you restrict yourself to some maximum throw value, then there 
are a finite number of prime patterns for a given number of balls (below we will see why). 
For example, with 3 balls if you restrict yourself to throw values no greater than 5, the 
exhaustive listing of prime patterns is: 

3
42

4 51 2
441
522
531

4 450 2
4440
4530
5241

The Longest Prime Siteswap Patterns 



5340
5511
5520
45501
52440
52530
53502
55140
55500

4 55050 2
455040
525501
551502
5255040
5350530
55150530

where the excited-state ones are shown with starting and ending throws. 

The main point is that any 3 ball, height 5 siteswap you write down can be decomposed into 
combinations of these patterns (try it). In this sense the prime patterns are like the prime 
numbers, however here there are a finite number (restricting yourself to some maximum 
throw). In particular there is a longest one, and that is in fact this document's main focus of 
study.  

Juggling States and State Graphs 
The easy way to tell whether a pattern is prime is to look at the juggling states that it 
traverses. A state is a record of the times in the future when the balls are going to land 
(think of it as the rhythm of the balls hitting your hands if you suddenly stopped juggling). 
A thorough discussion of juggling states and their associated graphs is given in Allen 
Knutson's Siteswap FAQ. 

The states traversed by 423 are:  

xxx-
--4--> xx-x
--2--> xxx-
--3--> xxx-

and we can immediately tell that: (1) 423 is a valid siteswap, since it returns to its initial 
state, and (2) it isn't prime, since the state xxx- is repeated (and the subsequences 42 and 3 
are repeatable). 

The virtue of the juggling state concept is that there are simple rules telling us how the state 
evolves from one throw to the next, according to what throw is made:  

1. The entire state shifts to the left on each beat. The leftmost entry is removed, and a '-
' shifts on from the right.  

2. If a 'x' shifted off the left, we must make a nonzero throw T. A throw T is allowed if 
and only if the shifted state has a '-' at position T; position T is converted to 'x' and 



we have our new state.  
3. If a '-' shifted off the left, we must throw a 0 (no throw) for the current beat.  

For some number of balls b and maximum throw value h the number of possible states is 
just (h choose b), the number of distinct ways of arranging the 'x's in the state. We form 
the state graph (b,h) by writing down all possible states, and then drawing an arrow from 
S1 to S2 if there is a an allowed single-beat transition (via the rule above) taking us from S1 
to S2. These arrows are labeled by the throw values made. Shown below is the state graph 
(3,5). 

 

Once the graph is drawn, it's very easy to find patterns -- we just start at some state and 
follow the arrows around the graph until we return to our starting point. We then have a 
repeatable pattern since we could continue repeating the same circuit through the graph. If a 
pattern goes through the unique state with all the 'x's on the left (xxx-- in the figure 
above) then it is called ground state; otherwise it is called excited state. Finding transitions 
between patterns is just a matter of finding a path through the graph from some state on 
pattern 1 to some state on pattern 2.  

For our present purposes, though, the most important is the following: A prime pattern is 
one whose circuit in the graph touches upon no state more than once. In the language of 
graph theory, a prime pattern is a cycle in the graph. It is now obvious that no prime pattern 
can be longer than (h choose b), the total number of vertices in the graph. Below we will 
find an even stronger upper bound on the lengths of prime patterns.  

Block Form 
It is an empirical fact, first noted by Johannes Waldmann, that very long prime patterns are 
comprised mostly of throws 0 and h. Johannes also noted that in very long prime patterns, 
the 0 and h throws commonly occur in groupings of length h-2. Using these observations he 
wrote a very efficient program to generate long prime patterns, and conjectured that they 
were maximally-long (in almost all cases he was correct). Later we will understand why this 
form is so prevalent in long prime patterns. 

An asynch siteswap in (b,h) is in block form when it is composed of one or more blocks. 



Each block consists of:  

1. at most h-2 throws (called the shift throws), each of value 0 or h, followed by  
2. a throw (called the link throw) of value greater than 0 but less than h.  

The block size is the total number of throws per block, at most h-1. It is convenient when 
writing block patterns to use '-' for 0 and '+' for h, writing only the link throws explicitly. 
Thus the (4,7) pattern 007771700773077071707706070774 in the list below is written --
+++1+--++3-++-+1+-++-6-+-++4. (It is also conventional to write ground-state patterns so 
that they start from the ground state, so this pattern is actually printed as +++1+--++3-++-
+1+-++-6-+-++4--.)  

Why do we restrict ourselves to no more than h-2 shift throws in a row? It's a 
straightforward exercise to prove the following  

Theorem: Let P be a prime pattern in (b,h) of length > h. Then P contains no 
runs of +/- throws longer than h-2. 

Consequently every prime pattern longer than h will be in block form, as defined. 

Shift Cycles 
We now turn our attention toward understanding the structure of the juggling graph (b,h). 
This will explain the empirical facts noted above and will also provide powerful means of 
calculating long prime patterns. 

Let S be a state in the graph. Then it is always the case that S has either a 0 or h throw 
leading out of it (the contents of the leftmost position in the state determines which). If we 
follow this arrow, we get to a new state which is just S shifted left by one position. After no 
more than h of these +/- throws we will return to S, and in this way we form a prime 
pattern (called a shift cycle) containing S and its distinct rotations. Find the shift cycles in 
the (3,5) graph drawn above (they are the heavy arrows).  

It is clear that each state in (b,h) is in exactly one shift cycle. The shift cycles are not 
always of length h; for example, x-x-x- in (3,6) lies on a shift cycle of length 2. When b 
and h are coprime all shift cycles are length h; otherwise there are shorter shift cycles. It is a 
relatively straightforward exercise to calculate how many shift cycles a particular graph has, 
and of what lengths.  

Now consider what happens when we make a link throw (not 0 or h), the only way to switch 
from one shift cycle to another. On the left side of the figure below we illustrate part of a 
prime pattern which link throws onto a shift cycle, follows it with +/- throws, and then link 
throws off.  



 

The pattern must enter the shift cycle on a state of the form A- (A is some x/- sequence of 
length h-1), since states Ax can only be entered with a + throw. The state immediately prior 
to state A- in the shift cycle is -A. But -A has only a single throw out of it, 0. This implies 
that:  

1. State -A has not been visited by the pattern yet. If it had then A- would also have been 
already visited, contradicting our assumption that this is a prime pattern.  

2. State -A will not be visited later in the pattern. If it were, the only way to get out is 
through the (already visited) state A-.  

Taken together, these imply that a link throw onto state S forces the next state 
"upstream" in S's shift cycle to be missing from the pattern. This is indicated in the 
figure by the open circle for state -A. 

A similar logic applies to link throws off a shift cycle, which can only occur at states of the 
form xB. The next state in the shift cycle is Bx, which is only entered with a + throw from 
our exit state xB. Clearly state Bx must also be missing from the (prime) pattern. We exclude 
a single state overall, rather than two, by combining these two missed states as shown on 
the right side of the figure above.  

Complete and Incomplete Prime Patterns 
We can now understand why maximal patterns are usually composed of long blocks: each 
link throw excludes at least one state, so the longest patterns will tend to stay on a shift 
cycle as long as possible before link throwing to another cycle. It is also clear from our 
discussion above that a prime pattern must miss at least one state on each shift cycle, 
yielding the following upper bound on the length of a prime pattern (this was discovered by 
Johannes): 

Lbound = (Total # of States) - (Total # of Shift Cycles) 
 

Prime patterns that satisfy the upper bound (L=Lbound) are called complete patterns, and are 
missing exactly one state from each shift cycle. In the next section we will discover that 
these missing states have an interesting relation to one another. 



Prime patterns shorter than Lbound are called incomplete, and at least one shift cycle is 
missing more than one state. It is useful to classify incomplete patterns into the following 
categories:  

Type I incomplete -- for every shift cycle, all missing states on the shift cycle are 
contiguous.  
Type II incomplete -- some shift cycle has missing states that aren't contiguous.  

A similar terminology is applied to blocks within prime patterns. A block of length (Cycle 
Length - 1) is a complete block, and a shorter one is an incomplete block. A complete 
pattern is composed entirely of complete blocks.  

Inverses 
Now let P be a complete prime pattern (L=Lbound). Is there any structure to the states which 
are missed by P? In fact there is, and to demonstrate consider again the complete prime 
pattern +++1+--++3-++-+1+-++-6-+-++4-- in (4,7). This pattern misses the following 5 
states in the graph: 

---xxxx
-x--xxx
--xx-xx
-x-xx-x
--x-xxx

Reversing these states, we find that they form the list of states for a valid pattern: 

xxxx--- <--
--6--> xxx--x- |
--4--> xx-xx-- 3
--6--> x-xx-x- |
--1--> xxx-x-- ---

The numbers in this pattern are just the link throws in the original pattern, subtracted from 
h! 

This apparent magic is due to the following simple result. (We introduce here the notation 
A' to denote the reverse of the x/- sequence A.)  

Theorem Assume a link throw T connects state xB to state A-, where A and B 
are x/- sequences of length h-1. Then state xB' is connected to state A'- with 
the link throw h-T.  

(The link throw is out of state xB and so the state Bx is missed by the pattern. The theorem 
shows that the reverse of this missed state, xB', is traversed by the pattern derived from the 
link throws.) 

In fact the theorem shows that for any complete prime pattern, the link throws when 



subtracted from h form a valid pattern. I call this the inverse of the original pattern. For 
example, the longest prime pattern in (3,9) is the complete pattern ++5----+-+1+----+-
8-+----+7--+---+1+--+---8-8--+--+-8---+--+6----++-8----- (L = Lbound = 74); 
the inverse 4812811131 is read off from the link throws and is also a valid pattern in (3,9).  

Below I show schematically what is going on, in a case with 3 shift cycles in the graph 
(recall that for complete prime patterns there is exactly one state missing from each shift 
cycle). Open circles indicate states missing from the pattern, and dashed arrows indicate 
throws between these (reversed) states forming the inverse pattern.  

 

The inverse patterns have a much stronger property than just being valid, however. The 
inverse of a complete prime pattern has the interesting property that each of its states lies on 
a different shift cycle (states A and B are on the same shift cycle if and only if A' and B' 
are). I call patterns with this property superprime. They provide a very efficient way to 
find complete prime patterns.  

What can we say about incomplete prime patterns? A Type I incomplete pattern has a well-
defined inverse, shown schematically in the following figure, where there is an extra 
missing state on one of the shift cycles (L = Lbound-1). The inverse follows along the 
(contiguous) reversed missing states with shift (+/-) throws and is not superprime.  



 

It should be graphically clear in the figure above how the inverse operation is defined. An 
important property is that the inverse of the inverse pattern is the original pattern (inverse2 
= 1). We can efficiently find complete and Type I incomplete prime patterns by finding 
their inverses and applying the inversion operation.  

Type II incomplete prime patterns don't always have an inverse that is one continuous path 
through the graph. Sometimes the reversed missing states form several disjoint patterns, not 
just one, as seen in the following figure. Finding Type II incomplete patterns is more 
computationally difficult for this reason. A reasonably efficient algorithm can nevertheless 
find quite long Type II patterns (L > 1000).  

 

The Challenge 
Which graphs (b,h) contain complete prime patterns? 

The answer is unknown, and even a partial answer would be impressive.  

Dietrich Kuske has proven that there are no complete prime patterns in (b,2b) when b>2.  

The List 
For each pattern in (b,h) there is a duality transform to get a pattern in (h-b,h): you 
reverse the pattern throw by throw, and then subtract all throws individually from h. For 



example, one of the patterns in (3,5) is 423; applying the duality transform gives 231 in 
(2,5). A nice property of this transform is that a pattern is prime if and only if its dual is as 
well (exercise: figure out the relationship between a pattern's list of traversed states and that 
of its dual). In particular, a maximally-long prime pattern in (b,h) will have a maximally-
long dual in (h-b,h), and so we only need to calculate prime patterns for the cases 
where h>=2b. An interesting case is when h=2b, and you find dual pairs, for example 
661600550606400 and 662060611660500 from (3,6). Some patterns, such as 4400 in 
(2,4), are self-dual. 

The list below summarizes everything I know about the longest prime patterns. It is 
organized according to number of balls and maximum throw value.  

The L, Lbound, # States column shows length of the longest prime patterns, the upper 
bound on this length (discussed above), and number of states in the graph, respectively. 
These obviously must form a nondecreasing sequence.  

The Number of Patterns column indicates how many patterns there are of the maximum 
length. For cases where the longest patterns are incomplete, a pair of numbers is given in 
brackets indicating the number of Type I and Type II patterns respectively. '?' entries 
indicate that complete calculations have not yet been done and there may be additional 
patterns of the maximum length. In all cases, however, it is known with certainty that there 
are no prime patterns longer than the ones presented here.  

Lastly, the Number of Patterns entries link to another page listing the patterns themselves.  

Note: These results were all obtained with my "jdeep" program, available on my juggling 
page (linked from the bottom of this one).  

Maximum
Throw

L, Lbound, 

# States
Number of 

Patterns

2 balls 3 3, 3, 3 1
4 4, 4, 6 2
5 8, 8, 10 1
6 12, 12, 15 1
7 18, 18, 21 1
8 24, 24, 28 1
9 32, 32, 36 1
10 40, 40, 45 1
11 50, 50, 55 1
12 60, 60, 66 1

(pattern continues)
3 balls 4 4, 4, 4 1

5 8, 8, 10 1
6 15, 16, 20 {6,0}



7 30, 30, 35 1
8 49, 49, 56 3
9 74, 74, 84 1
10 108, 108, 120 1
11 149, 150, 165 {18,0}
12 200, 201, 220 {28,2}
13 263, 264, 286 {4,4}
14 337, 338, 364 {38,0}
15 424, 424, 455 1
16 524, 525, 560 {20,10}
17 639, 640, 680 {34,4}
18 769, 770, 816 {50,7}
19 917, 918, 969 {0,4}
20 1082, 1083, 1140 {92,4}
21 1266, 1266, 1330 1
22 1469, 1470, 1540 {>=4,?}

4 balls 5 5, 5, 5 1
6 12, 12, 15 1
7 30, 30, 35 1
8 58, 60, 70 {26,18}
9 112, 112, 126 1
10 188, 188, 210 9
11 300, 300, 330 144
12 452, 452, 495 45
13 660, 660, 715 >=245

5 balls 6 6, 6, 6 1
7 18, 18, 21 1
8 49, 49, 56 3
9 112, 112, 126 5
10 225, 226, 252 {752,86}
11 420, 420, 462 59346

6 balls 7 7, 7, 7 1
8 24, 24, 28 1
9 74, 74, 84 1
10 188, 188, 210 9
11 420, 420, 462 59346

7 balls 8 8, 8, 8 1
9 32, 32, 36 1



Back to my juggling page. 

10 108, 108, 120 1
11 300, 300, 330 144

8 balls 9 9, 9, 9 1
10 40, 40, 45 1
11 149, 150, 165 {18,0}
12 452, 452, 495 45

9 balls 10 10, 10, 10 1
11 50, 50, 55 1
12 200, 201, 220 {28,2}
13 660, 660, 715 >=245


