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Abstract

The siteswap notation is a widely spread tool to de-

scribe juggling patterns [2, 3]. To find new siteswaps or

transitions between two different siteswaps the so-called

siteswap state diagrams were introduced [1, 2]. This pa-

per deals with a new approach to compute siteswap state

diagrams.
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1 Juggling States

Definition: Juggling States. We define the set of jug-

gling states with b balls and a maximum throw

height of h ≥ b

S(b, h) :=
{
s | q2(s) = b ∧ s < 2h

}
, (1)

where q2(s) is the digit sum of s in its binary repre-

sentation.

The digit sum qm(s) of any number s in a base-m posi-

tional notation can be defined as

qm(s) :=

⌊log
m

s⌋
∑

k=0

dm(k, s) , (2a)

dm(k, s) :=
⌊ s

mk

⌋

mod m , (2b)

where dm(k, s) is the k-th digit (from right) in base-m

positional notation of s.

In the following we will note a state s ∈ S also in its

binary representation. For a better readability, the zeros

will be replaced by a dash (-). Leading zeros will also be

written, so we can always see what our maximum throw

height is.

By definition a juggling state s ∈ S(b, h) is in a binary h-

digit number (includeing the leading zeros) and contains

exact b ones. Therefore the total number of states ns in

a state space S(b, h) can be computed by the formula

ns =

(
h

b

)

. (3)

Table 1 shows the cardinal numbers of the set S(b, h), i. e.

the total number of juggling states dependent on number
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Table 1: Total number of states in dependence of number
of balls b and maximum throw height h.

max.
throw
height

h

1 1
2 2 1
3 3 3 1
4 4 6 4 1
5 5 10 10 5 1
6 6 15 20 15 6 1
7 7 21 35 35 21 7 1
8 8 28 56 70 56 28 8 1

1 2 3 4 5 6 7 8
number of balls b

of balls b and maximum throw height h.

Definition: Ground State. The ground state sg is de-

fined as the smallest entry in the set S(b, h)

∃!sg ∈ S(b, h) : sg ≤ s ∀s ∈ S(b, h) . (4)

The b-ball ground state sg can be computed by

sg =

b−1∑

k=0

2k . (5)

For example the ground state of 3-ball patterns up to

height 5 will be denoted as --111 ∈ S(3, 5), which is a

decimal 7. The 3-ball states up to height 5 are

S(3, 5) = {7, 11, 13, 14, 19, 21, 22, 25, 26, 28} =

{--111, -1-11, -11-1, -111-, 1--11,

1-1-1, 1-11-, 11--1, 11-1-, 111--} . (6)

2 Transitions

In this section we will introduce mappings. We will not

use the classical notation f(x), instead of that we will

write (x)f , i. e. the mapping f operates on the number

x. Furthermore we will use the composition of mappings

(x)(f ◦ g) = ((x)f)g or in a shorter form (x)fg.

2.1 Elementary Transitions

To change juggling states, we need transitions between

them. In practice, an elementary transition is a throw of

an object.

Definition: Elementary Transitions. The set of all

elementary transitions up to height h is defined as

T (h) = T0 ∪ T1(h) = {0} ∪ {1, 2, 3, . . . h} . (7)

The subsets Tk(h) are the possible throws with k

objects. If you have no object you can just do one

thing: throw nothing. If you have an object, you can

throw it to an arbitrary height up to the maximum

height h. Note that the elements of T (h) are map-

pings and no numbers. The corresponding number

of t ∈ T (h) will be denoted as |t|.

Each elementary transition is a mapping between

two states. It can be computed by

t : S(b, h) → S(b, h) , (8a)

t : s 7→







1
2s : d2(0, s) = 0

1
2

(
s − 1 + 2|t|

)
: d2(0, s) = 1

. (8b)

If the last digit d2(0, s) = 0, the state s will be shifted to

the right (division by 2). Otherwise the last digit will be

reset and the |t|-th digit will be set (if possible). Then

the result has also to be shifted to the right.

Not every transition can operate on an arbitrary state.

A transition t ∈ T (h) can operate on a state s ∈ S(b, h)
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if it satisfies the conditions

t ∈ Tk(h) , where k = d2(0, s) , (9a)

d2(|t|, s) = 0 , (9b)

i. e. the last digit d2(0, s) decides whether an object can

be thrown (k = 1) or not (k = 0). If the object will be

thrown at height |t|, the |t|-th digit has to be zero.

On the ground state --111 of the state space S(3, 5) only

the transitions 3, 4 and 5 can operate. With the defini-

tion above we can compute the new state after a transi-

tion.

For example we start at state --111 and perform the

transition 3 on it:

(--111) 3 =
1

2





=7
︷ ︸︸ ︷

--111−1 + 23



 = 7 = --111 . (10)

As we see, the transition 3 maps the state --111 into

itself.

2.2 Composed Transitions

Definition: Composed Transition. A composition

of several elementary transitions is called composed

transition. Given are n elementary transitions and

n + 1 states with

ti : si−1 7→ si ∀i = 1 . . . n , (11)

then the composition of them is defined as the map-

ping

t1 ◦ t2 ◦ · · · ◦ tn ≡
n

©
i=1

ti : s0 7→ sn . (12)

Note that the composition of transitions is not commu-

tative, i. e. t1t2 6= t2t1.

Definition: Siteswap. If a transition (elementary or

composed transition) is an identity map

t ≡ idS(b,h) : s 7→ s , (13)

i. e. it maps a state s into itself, it is called a

“Siteswap”.

Most common siteswaps operate on the ground state sg

like 3 (cascade), 441 or 531. If a siteswap is an identity

map on the ground state sg, it is also called a “ground

state pattern”. E. g. 441, 414 and 144 are the same

tricks, but only 441 is a ground state pattern.

You can also arrange ground state patterns in an arbi-

trary way, e. g. ...441335314413... is a valid siteswap.

Theorem Siteswaps containing composed transitions

t1t2 with |t2| = |t1| − 1 ≥ 0 are not valid.

Proof Assume that t1 operates on s. Then the |t1|-th

digit of s will be set and shifted to the right by t1.

The (|t1| − 1)-th digit of the new state s′ = (s)t1 is

now set, but t2 operates only on s′ if the (|t1|−1)-th

digit is not set. q.e.d.

2.3 Transition Matrices and State Dia-

grams

By determining all possible transitions, we can obtain

state transition matrices and full state diagrams. Fig-

ure 1 shows all possible transitions between the states

s ∈ S(3, 5) in a state transition matrix. To find a valid

siteswap using this matrix, choose an initial state and

select a transition in this row. Go up or down to the di-

agonal of the matrix. Now you have found the next state.

Repeat this until you are back on your initial state.

Figure 2 shows the same information in a full siteswap

state diagram. A valid siteswap describes a closed curve

in this graph.

If two siteswaps operate on different states like the cas-

cade (siteswap 3) and the shower (siteswap 51), they can-

not be combined directly, i. e. ...3335151... is not a valid

siteswap. In this case, you have to find a transition be-

tween them. To find a valid transition from cascade to

shower, you can have a look into the siteswap state di-

agram to find a path which connects both tricks. For
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--111 -1-11 -11-1 -111- 1--11 1-1-1 1-11- 11--1 11-1- 111--

--111 3 4 5

-1-11 2 4 5

-11-1 1 4 5

-111- 0

1--11 2 3 5

1-1-1 1 3 5

1-11- 0

11--1 1 2 5

11-1- 0

111-- 0

Figure 1: State transition matrix for 3 balls up to height 5 with some tricks: cascade (siteswap 3, red) and shower
(siteswap 51, blue).

example valid transitions are

. . . 333 →4 → 5151 . . .

. . . 333 →52 → 5151 . . .

. . . 333 →5350 → 5151 . . .

. . . 333 →55150 → 5151 . . .

3 Reduced State Diagrams

As we can see in figure 2, there are some states which

have just one input or one output. Now we will try to

reduce the full state diagram by eleminating those trivial

states.

Definition: Trivial State. A state s is called a trivial

state, iff

∃!t1 ∈ T : (s′)t1 = s ∨

∃!t2 ∈ T : (s)t2 = s′′ (14)

where s′, s′′ are arbitrary valid states. Or in other

words, a state is called trivial if just one transition

maps into it or just one transition can operate on it

(or both).
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--111

1--11

-1-11 -11-1 11--1

1-11-

11-1-

1-1-1 -111- 111--

3

4

2

5

1

5

2 3

4 1

5 1

0

5

3

5

0
4

2
5

0

0

Figure 2: The full siteswap state diagram for 3 balls up to height 5 with some tricks: cascade (siteswap 3, red), shower
(siteswap 51, blue) and 441 (magenta).

If a state s is a trivial state, we can omit it, when we

draw the state transition matrix or the state diagram.

But we cannot omit the composed transitions

(s′)t1t2 = s′′ , ∀t1, t2 ∈ T satisfying eq. (14) . (15)

Now we have reduced the state s and therefore the com-

posed transitions t1t2 can be examined as elementary

transitions in further reduction.

Theorem All even states are trivial.

Proof A state s is even ⇔ d2(0, s) = 0. By definition all

transitions which can operate on an even state are

in T0 = {0}. Therefore exists exact one transition

that can operate on s. This fulfills the definition of

trivial states. q.e.d.

Theorem All states s > 2h−1 are trivial.

Proof By definition, the (h − 1)-th digit of a state s >

2h−1 is equal one. This is the highest digit of a state

s ∈ S(b, h), so this digit cannot be generated by

shifting a state s′ ∈ S(b, h) to the right. The only

way to generate this digit is to perform a throw t

of maximum throw height |t| = h, which fulfills the

definition of trivial states. q.e.d.

With the theorems above, a state s ∈ S(b, h) is trivial iff

d2(0, s) = 0 ∨ d2(h, s) = 1 . (16)

Therefore a state s ∈ S(b, h) is nontrivial iff

d2(0, s) = 1 ∧ d2(h, s) = 0 . (17)

We know that a state s ∈ S(b, h) consists of h binary dig-
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Table 2: Total number of nontrivial states ssnt in depen-
dence of number of balls b and maximum throw height
h.

max.
throw
height

h

2 1
3 1 1
4 1 2 1
5 1 3 3 1
6 1 4 6 4 1
7 1 5 10 10 5 1
8 1 6 15 20 15 6 1

1 2 3 4 5 6 7
number of balls b

its. If s is nontrivial, two digits are already well-defined.

To find nontrival states, we can only distribute b−1 ones

among the inner h − 2 digits. So the total number of

nontrivial states nsnt can be computed by

nsnt =

(
h − 2

b − 1

)

. (18)

Table 2 shows the number of nontrivial states in depen-

dence of the number of balls b and the maximum throw

height h.

Figure 3 shows the reduced state transition matrix and

figure 4 shows the reduced siteswap state diagram. As we

can see, there are only three nontrivial states in S(3, 5).

You can find much more reduced siteswap state diagrams

for 3, 4 and 5 balls up to height 7 at [1].

--111 -1-11 -11-1

--111
3, 5520,
55500

4, 52 53, 551

-1-11 2, 530 51 4, 550

-11-1 1, 40 50

Figure 3: Reduced state transition matrix for 3 balls up
to height 5 with some tricks: cascade (siteswap 3, red)
and shower (siteswap 51, blue).

--111

-1-11 -11-1

3, 5520, 55500

4,
52

2,
53

0

4, 550

50

1, 40

53, 551

51

Figure 4: The reduced siteswap state diagram for 3 balls
up to height 5 with some tricks: cascade (siteswap 3,
red), shower (siteswap 51, blue) and 441 (magenta).
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Nomenclature

b — number of balls.

h — maximum throw height.

ns — total number of states.

nsnt — number of nontrivial states.

s, sk — juggling states.

sg — ground state.

S — set of juggling states.

t, tk — transitions between states.

T — set of transitions between juggling states.
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