The Physics of Juggling
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By Bengt Magnusson and Bruce Tiemann

J uggling, the art of controlling more objects up in the
air than you have hands, has amazed and entertained
people for thousands of years. From ancient Egyptian
hieroglyphics through old Japanese woodcuts to present
day photographs, we have images and stories of people
manipulating stunning numbers of objects. A nameless
Egyptian 4000 years ago was said to be able to juggle nine
balls. Two Japanese jugglers, both living many hundred
years ago, have also left their marks in the history of
juggling. One was said to have stopped a war with his
nine-ball juggling. His enemies fled in panic before his
supposed magic since nobody but a powerful sorcerer
could possibly perform such a feat. The other could juggle
seven swords. Earlyin our own century, Jenny Yaeger and
Enrico Rastelli set records by becoming the only people
ever to verifiably juggle ten balls each. That number was
surpassed recently, but with an easier juggling prop, when
Sergei Ignatov and Albert Petrovsky successfully juggled
eleven rings each. Yet a juggler does not need large
numbers of objects to spellbind an audience, as shown by
present-day performers such as Michael Moshen and the
Airjazz trio. Three-ball juggling has enough potential to
keep a creative juggler busy for a lifetime.

Many people have asked themselves how jugglers can
perform the tricks they do. How is it possible to control
all the objects in the air? A first step towards an answer to
this question would be to explore the basic physical laws
that govern the activity. Being both physicists and active
jugglers, we set out to discover some of these laws almost
three years ago during our senior year at the California
Institute of Technology. While the physics involved does
not go beyond the level of a first-term freshman, this
exercise of ours has been very entertaining and also an
opportunity for "playing by the seashore."

The fundamental observation, familiar to any juggler, is
that all basic juggling is performed in a very strong pattern,
where each hand does exactly the same thing. The basic
pattern, which is the same no matter what kind of objects
are being juggled, comes in two versions, one used when
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an odd number of objects are juggled, and one used for an
even number. For odd numbers, each hand throws the
object in an arc across to the other hand, where it is caught
and thrown back in a similar arc. The object is released
close to the center of the pattern and is caught on the
outside. The two arcs intersect in front of the juggler, and
each object visits both hands. This pattern is called the
cascade (Fig. 1). For even numbers, each hand throws the
object from the inside, and the same hand catches it on the
outside. The two arcs do not intersect, and the objects
never switch hands. This pattern is called the fountain
(Fig. 2). Most nonjugglers have the misconception that all
juggling takes place in a "circular" pattern. This variation
is called the shower (Fig. 3) and is considerably harder
than the patterns described above. In a shower, there is
only one arc instead of two, and as a result there is much
less time for each throw or the need for a much higher arc,
both of which make the juggling harder. A pattern inter-
mediate between the cascade and the shower, called the
half-shower, is also fairly common.

To derive the relationship between throw height and
number of balls in the basic patterns, we need to introduce
a few variables. Let the time between consecutive throws
from one hand be 7. The object will always spend some
time in the hand: it is caught, carried over to the throwing
position, and released. Call this time 8 7. 6 is then the
fractional dwell time, and 0 < 6 < 1. Let n be the number
of objects juggled, and h be the height of each throw.

First assume nis even. Each hand thenhas 12 n objects,
and it would take 12 nt seconds for a hand to go through
a full cycle. However, because of the dwell time, the first
object must land a time 6r earlier, and the time t each
object spends up in the air is t = V2nt —6r
= V21(n — 20). This formula holds true for odd n as well,
although the derivation is somewhat different. Since

h = I/E;gt2 we have, with¢ = 12t(n — 20), that
= Lot — 20242 ey
h = 32g(n 20)°t
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must be aimed better than a low throw, and 7 determines
how fast you must be able to aim that well. It is easier to
aim well if you have plenty of time to do it, much less so if
you are rushed. Assume for simplicity that the objects are
point-like. This removes the problem of analyzing colli-
sions between objects, which is a very difficult problem to
solve, especially with large rotating props like clubs. Let
the width of each arc be s, with an error margin of As on
either side. Let the object be released with velocity v at
an angle « from vertical, with an error Aa that gives rise
to the error in width As (Fig. 4). To reach height h we must
have vy, = (2¢h)"*. Thenv,, /vy, = tana , giving vy,
= vy, tan @ and s =1vy, = (81/g)?vy, tana =
(811/g)1/2(2gh)1/2 tan @ = 4h tan a, or @ = arctan (s/4h).
Nowa + A a = arctan [(s + A s)/4h], giving Aa = arctan
[(s + As)/4h]— arctan (s/4h). Since arctan (x) = x +
terms of order x” and higher, we have
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Fig. 1. The cascade pattern for juggling odd numbers of objects.

n — 20 is the time average of the number of objects in the
air. For the vast majority of jugglers, 8 is within a few
percent of 0.5. The reason for this is that @ = 0.5 establishes
a very strong rhythm: one hand will be making a throw
exactly when the other hand is making a catch. 7 varies
from about 0.2 s to 0.8 s; for most jugglers 7 = 0.5 s.

7 and h are the limiting factors for maintaining a juggle.
h determines how accurately you must aim; a high throw
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Fig. 2. The fountain pattern for juggling even numbers of ob-
jects.
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Fig. 3. The shower has only one arc and is more difficult to
perform.

As is about 0.3 m for most jugglers, and the highest
patterns juggled by the best jugglers with any consistency
are about 6-m high, like Ignatov’s 11 rings. This gives Ac
= 0.6°! Thus Ignatov had to aim each ring to within 0.6°
just to be able to reach it. In order to avoid collisions, the
aim would have to be even better. Witha = arctan (s/4h)
= 5/4h, we can form Aa/a = (As/4h) [ (s / 4h) = As/s,i.e.,
the fractional error in the angle is independent of throw
height and, with s being about 0.9 m, equal to V3 for most
jugglers.

Since A« is limiting the throw height, it, together with
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Fig. 4. Error geometry for a throw.

7, limits the number of balls that can be juggled. Increas-
ing 6 will decrease h somewhat, thus increasing Ac, but the
rhythm of the pattern will be lost, and the time each hand
has to reach for the next incoming object, 7(1 — 6), de-
creases. If a typical juggler, with7 = 0.5 s and 6 = 0.5,
wants to juggle seven balls, each throw would, according
to Eq. (1), have to be about 2.8-m high. If the same juggler
moved to the moon, where gis V6 of its value at earth, and
keeps the same 7, 6, and h, we can solve for n to find out
how many balls he could juggle there. n = 26 + i

(32 h/gm,,,,,? " 157 or 15 balls. Fifteen is still small
enough to allow all of the balls to fit in the pattern without
causing constant collisions. It could be argued that the
sheer number of balls up in the air would be too stagger-
ingly complex for the brain to process, thus making 15 balls
impossible. In our experience, that is not the case. The
brain learns the pattern recognition for a higher number
in a remarkably short period of time, much sooner than the
needed motoric skills are developed. Even the problem of
holding 15 balls in two hands at the start of the juggle and
then releasing them in a controlled pattern is not insur-
mountable. One could, if necessary, use a juggling ma-
chine to start the pattern. We therefore believe 15 balls to
be a very reasonable number to be juggled on the moon.
Today’s best Earth-bound jugglers can control 9 balls at a
time; on the moon, they should then be able to do about 19
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balls!

If you are juggling n objects, you may wonder at what
height you would juggle a different number m, keeping ,
6 constant. The immediate answer from most people is
that twice as many objects would require a pattern four
times as high, but they forget the effect of 6. The correct
result is, from Eq. (1),

hn_ n—292 ©)
hm (m—ze)

With 6 = 0.5 we get, for example, f¢/f3 = 6.25, which is
significantly different from four. It turns out that most
jugglers, rather than accepting the smaller Aa of a higher
h, accept a somewhat smaller 7 and increase h somewhat
less than might be expected.

In passing, it can be mentioned that throws of varying
heights can be combined in a single juggling pattern, pro-
vided some simple rules are followed. These combinations
lead to an entire class of juggling tricks we call "site-swaps."
First we must introduce some notation, originally invented
by Paul Klymack from Santa Cruz, who independently of
us discovered a subset of these tricks. In this notation, the
number n denotes the path into which you would throw the
ball if you were juggling that many of them. Thus, a 3
means you throw the ball in a low arc across to the other
hand, a 4 is a little higher but to the same hand, a 5 much
higher across to the other hand, etc. A 0 denotes an empty
hand, a 1 is a quick hand-off to the other hand, and a 2
means you just hold on to the ball for a beat. If you now
put together a string of numbers, like 75 6 2, it is sometimes
possible for you to juggle this pattern without collisions or
inconsistencies. Your hands always take an action at
evenly spaced intervals and throw the balls according to
the string of numbers. The balls will go to widely varying
heights, and the pattern may look very confusing, but if you
picked your string of numbers correctly, they will always
land, as if by magic, right where you need them, right when
you need them.

What are the criteria for a correct string of numbers?
First of all, the numbers must average to the number of
balls you are trying to juggle. 75 6 2, for example, averages
to five, so that would be a five-ball trick. However, this is
not enough. You must also make sure two balls will never
land in the same hand at the same time. Take the 7562
again. Since this is a five-ball trick, we can normalize the
numbers to five, and call it a2 0 1 -3. (The numbers now
add upto zero.) The 2 will cause the ball thrown in position
one to land two positions later, in position three. The ball
in position three is moved forward one position, to four.
The ball in position four is moved to three positions earlier,
to position one. (The ball in position one has already been
moved out of the way.) Finally, the ball in position two
stays there. We see that after one cycle, no two balls tried
to be in the same position. Compare this to an illegal trick,
like the 8 54 3. These also average to five and transcribe
to30-1-2. Here, the0,-1,and -2 try to arrive in the second
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position, thus giving rise to a triple collision. The best way
to discover the legal tricks is to have them generated by a
computer. In doing that, we generated several thousand
tricks, 99.9 percent of which were completely unknown to
other jugglers before. If you are a juggler, and want to
amaze and confuse your other juggling friends, try some of
these tricks: 4 4 1 and 514 1 4 with three balls, 753 1 and
85241 with four balls,and 666 61,7562,75751, and
9 55 5 1 with five balls. The mathematically interested
reader may notice that the set of all site-swaps of length n
(together with the operation composition of functions)
forms a group isomorphic to sym (n).

The results above apply to all the common juggling
props — balls, rings, and clubs. Clubs introduce an entirely
different variable to the analysis. They rotate in flight, and
must be caught by the handles. (Rings also rotate in flight,
but they can be caught no matter what the rotationis.) This
complication, together with their larger size, makes clubs
by far the most difficult prop to juggle, and the official
world record is only seven. The analysis of club spin
produced a quite surprising result. By tossing the club
higher, it will spin more since it is in the air for a longer
time, and it seems natural that a double spin would have
to be thrown four times as high as a single spin. It turns
out that when you throw the club higher, you also make it
spin faster, and a double spin is exactly twice as high as a
single spin.

A good model of how a club is thrown is as follows. The
club is thrown with the juggler’s arm acting as a pivot arm
of length from his elbow to the center of mass of the club,
rotating around a fixed point (his elbow) (Fig. 5). Let 4}
be the distance from the juggler’s elbow to the tip of the
club handle. If the juggler uses a lot of wrist action when
throwing the club (this varies from juggler to juggler),{ may
not exactly equal the distance from the juggler’s elbow to
the center of mass of the club, but there will be some
effective lever arm/eff, which is quite constant for any
individual juggler. The same holds true for/;. Let w be
the angular velocity of the pivot arm. The center of mass
of the club is released with velocity vy = w£ and stays in
the air for a time t = 2vo/g = 2w{/gs. The tip of the
handle starts with velocity v; = w(£—£1) . Inthe cen-
ter of mass frame, the tip of the handle has speed
vo—v; = ol — w(L—-1£,), and this speed remains
constant for the entire throw. We see that the handle
rotates with the same angular frequency w as the pivot arm
had. Since the handle has to rotate by an angle of 2 xm
for m revolutions, it must stay up a time tm = 2rm/w. This
time must equal the time previously calculated: 2zm/w =

2wl (g orw = (mmg/l)"*. The throw height is then
1 (27tm)2 _ mnl )

1 2 _1
hm = g8n = g8\~ 2

Note how /i is a linear function of m. Another notewor-
thy feature of this formula is its independence of g. The
reason is that in a lower g, you must release the club slower

Fig. 5. Kinematics at a club launch.

if you want it to go up only to the same height asin a higher
g. By doing that, you automatically put less spin on the
club, but since g is lower, the club stays up in the air longer
by the exact amount to compensate for the slower spin.

If you ever see a good five-club juggler, we would
suggest you strobe your eyes by blinking hard and fast while
looking at the pattern. Every once in a while you will notice
how all clubs line up in parallel. It will only happen when
an odd number of clubs are being juggled. Even numbers
of clubs will have other, less-characteristic configurations.
Why is this? Let n = number of clubs, m = number of
spins, and w, 7, and 0 as before. Since each hand throws
every 7 seconds, the time between a left-hand throw and
the following right-hand throw is V2 v. The angular sepa-
ration between two clubs at the time of release is then

B =Vewr. With by =mnl/2 = 3—12g(n - 2&9)2 2 we

get /= g(n —20)21%/16mm, and w = (mag/L)"? =
dmrn/(n — 20)r, giving

wtT 2mmw rad = 360 m deg.

_ Wt _ )
ﬂ_2_n—29 n—20

Thus we see that parallel clubs, 8 = 180°, occur only at
n = 2(m + 6).n must be an integer, so 6 must be either
0, 0.5, or 1. But 8 = 0 or 1 is nonphysical, which leaves us
with6 = 0.5,and n = 2m + 1. Since most jugglers have
O very close to 0.5, and since three clubs are usually juggled
with single spins, five with doubles, seven with triples, etc.,
parallel clubs are frequently attained by jugglers. Parallel
clubs could also happen at 8 = 360°, five clubs with
quadruple spins, for example, but very few people can
juggle this pattern. Other interesting angles, all at6 = 0.5,
are: 90°, five singles; 120°, four singles and seven doubles;
240°, four doubles and seven quads; and 270°, five triples.
We have managed to capture most of these angles on
photographs, which has given us a lot of confidence in our
simple model for club juggling. The photograph shows the
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Fig. 6.
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The authors juggle four and five clubs.
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authors juggling four and five clubs with
double spins, demonstrating 8 = 240°
and 180°, respectively (Fig. 6).

We would like to thank all of our
juggling friends, who patiently per-
formed for our cameras and stop
watches to help us confirm our theories.
In particular we thank Dan Bennett,
David Deeble, Barry Friedman, Daniel
Holzman, Tyler Linkin, Bob
Mendelsohn, and Owen Morse. We
have seen how juggling patterns obey
fairly simple physical rules. Nowadays
we don’t run away in terror when we see
skilled jugglers, but even though the
physical background of juggling has
been mapped out, the biological ques-
tions of how the juggler actually goes
about utilizing these rules and acquiring
the motoric skills remain unanswered. ¢




